

Latent Space Autoregression for Novelty Detection **CVPR** Davide Abati, Angelo Porrello, Simone Calderara, Rita Cucchiara Department of Engineering, University of Modena and Reggio Emilia, Modena, Italy, {name.surname}@unimore.it

Novelty detection is defined as the discrimination of new samples that significantly differ from training data. In this work, We focus on the semi-supervised setting, where the \leq novelties are the ones exhibiting significantly different traits w.r.t. an underlying model of regularity, built from a collection of normal samples.

3. Autoregression

Autoregressive models factorize the joint density function on d variables through the chain rule of probability:

$$p(\mathbf{z}) = \prod_{i=1}^{d} p(z_i | \mathbf{z}_{< i}) \qquad (z_1) + (z_2) + (z_3) + (z_4)$$

We introduce the Masked Fully Connection (MFC) and Masked Stacked Convolution (MSC) layers enforcing an autoregressive procedure within the estimator $h(\mathbf{z}; \theta_h)$.

1. Problem Statement

4. Entropy Regularization

The \mathcal{L}_{LLK} objective leads to the minimization of the differential entropy underlyin the encoding distribution.

5. Video Anomaly Detection

Results on the UCSD Ped2 and ShanghaiTech datasets are reported as Area Under ROC Curve (AUROC).

6. One-Class Novelty Detection

We test the model in one class settings, training it on each class of either MNIST or CIFAR-10 separately. We report the comparison in terms of average AUROC.

8.	Model	Ana	lysis
----	-------	-----	-------

We compare MFC and MSC against recurrent layers.							
CIFAR-10	UCSD Ped	UCSD Ped2					
$LSTM_{[100]}$	0.623	$LSTM_{[100]}$	0.849				
$LSTM_{[32,32,32,32,100]}$	0.622	$LSTM_{[4,4,4,4,100]}$	0.845				
$MFC_{[100]}$	0.625	$MSC_{[100]}$	0.849				
$MFC_{[32,32,32,32,100]}$	0.641	$MSC_{[4,4,4,4,100]}$	0.954				

)144		UCSD Ped2	ShanghaiTech
Car	ConvAE [1] Hinami et al [2]	$0.850 \\ 0.922$	0.609
leaves 241	TSC [4]	0.922	0.679
	Stacked RNN [4] FFP [3]	$\begin{array}{c} 0.922\\ 0.935\end{array}$	0.680
	FFP+MC [3]	0.954	0.728
calization map	Ours	0.954	0.725

7. DR(eye)VE Outlier Detection

We measure the correlation about the novelty score and the attentional shifts labeled in the DR(eye)VE dataset.

References

- [1] M. Hasan et al. Learning temporal regularity in video sequences. In CVPR, 2016.
- [2] R. Hinami et al. Joint detection and recounting of abnormal events by learning deep generic knowledge. In ICCV, 2017.
- [3] W. Liu et al. Future frame prediction for anomaly detection a new baseline. CVPR, 2018.
- W. Luo et al. A revisit of sparse coding based anomaly detection in stacked rnn framework. ICCV, 2017.