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1. Problem Statement
Novelty detection is defined as the discrimination of new samples that significantly differ
from training data. In this work, We focus on the semi-supervised setting, where the
novelties are the ones exhibiting significantly different traits w.r.t. an underlying model
of regularity, built from a collection of normal samples.

2. Model
Our model leverages an auto-encoding
architecture, composed by:

– an encoder f(x; θf ) : Rm → Rd;
– a decoder g(z; θg) : Rd → Rm;
– an estimator h(z; θh) : Rd → [0, 1].

Objective:

L = LREC(θf , θg) + λLLLK(θf , θh)

= Ex

[
||x− x̃||2︸ ︷︷ ︸

reconstruction term

− λ log(h(z; θh))︸ ︷︷ ︸
log-likelihood term
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3. Autoregression
Autoregressive models factorize the joint density
function on d variables through the chain rule of
probability:

p(z) =
d∏

i=1
p(zi|z<i) z1 z2 z3 z4

We introduce the Masked Fully Connection (MFC) and
Masked Stacked Convolution (MSC) layers enforcing an
autoregressive procedure within the estimator h(z; θh).

4. Entropy Regularization
The LLLK objective leads to the minimization of the
differential entropy underlyin the encoding distribution.
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5. Video Anomaly Detection
Results on the UCSD Ped2 and ShanghaiTech datasets are reported as Area Under ROC Curve (AUROC).
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UCSD Ped2 ShanghaiTech
ConvAE [1] 0.850 0.609

Hinami et. al [2] 0.922 -
TSC [4] 0.910 0.679

Stacked RNN [4] 0.922 0.680
FFP [3] 0.935 -

FFP+MC [3] 0.954 0.728
Ours 0.954 0.725

6. One-Class Novelty Detection
We test the model in one class settings, training it on
each class of either MNIST or CIFAR-10 separately. We
report the comparison in terms of average AUROC.

MNIST CIFAR10
OC SVM 0.951 0.586

KDE 0.814 0.610
DAE 0.942 0.590
VAE 0.969 0.586

Pix CNN 0.618 0.551
GAN 0.866 0.592
Ours 0.975 0.641  0

 0.3

 0.6

 0.9

 0  0.3  0.6  0.9

TP
R

FPR

ROC Curve - MNIST

LLK
REC
NS

7. DR(eye)VE Outlier Detection
We measure the correlation about the novelty score and
the attentional shifts labeled in the DR(eye)VE dataset.
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8. Model Analysis
We compare MFC and MSC against recurrent layers.

CIFAR-10
LSTM[100] 0.623
LSTM[32,32,32,32,100] 0.622
MFC[100] 0.625
MFC[32,32,32,32,100] 0.641

UCSD Ped2
LSTM[100] 0.849
LSTM[4,4,4,4,100] 0.845
MSC[100] 0.849
MSC[4,4,4,4,100] 0.954
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